全部欧美A级在线播放,狠狠亚洲婷婷综合色香五月,国产国拍亚洲精品A∨一级,大杳焦伊人久久综合福利

湖北企業(yè)新聞網(wǎng),歡迎您!

幫助中心 廣告聯(lián)系

網(wǎng)站關(guān)鍵詞: 湖北企業(yè)新聞網(wǎng)

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

來源:時(shí)間:2020-05-03 05:56:07 閱讀:-

PaddlePaddle之后,百度研發(fā)的移動(dòng)端深度學(xué)習(xí)框架也加入Github開源網(wǎng)站啦!百度方面表示,這一框架致力于讓卷積神經(jīng)網(wǎng)絡(luò)可極度簡單的部署在手機(jī)端。目前正在手機(jī)百度內(nèi)運(yùn)行。支持iOS gpu計(jì)算,體積小,速度快。

  • 體積 armv7 340k+

  • 速度 iOS GPU mobilenet 可以達(dá)到 40ms、squeezenet 可以達(dá)到 30ms

我們先來看看運(yùn)行效果:

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

看完Demo,如果你想了解demo源碼實(shí)現(xiàn)可以往下看,它位于examples目錄中。

運(yùn)行examples文件

  1. 復(fù)制項(xiàng)目

  2. 安裝apk\ipa文件或者導(dǎo)入IDE.

  3. 運(yùn)行

開發(fā)或使用要求

  • 安卓用戶:安裝NDK

  • 安裝Cmake.

  • Android NDK CMake 文件

  • 安裝Protocol Buffers.

如何使用MDL lib

OSX或者Linux上運(yùn)行測試

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

在項(xiàng)目中使用MDL lib

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

MDL lib使用多線程

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

開發(fā)

編譯android的MDL源碼

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

編譯iOS的MDL源碼

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

模型轉(zhuǎn)換

MDL需要兼容的型號(hào)才能使用。要獲得MDL兼容模型,程序員可以使用百度的腳本將其他深度學(xué)習(xí)工具訓(xùn)練的模型轉(zhuǎn)換為MDL模型。

百度方面強(qiáng)烈建議使用PaddlePaddle模型。

將PaddlePaddle模型轉(zhuǎn)換為mdl格式

Paddlepaddle型號(hào)可以轉(zhuǎn)換為MDL型號(hào)

百度開源移動(dòng)端深度學(xué)習(xí)框架,手機(jī)百度內(nèi)可體驗(yàn)!

將caffemodel轉(zhuǎn)換為mdl格式

#Convert model.prototxt and model.caffemodel to model.min.json and data.min.bin that mdl use

./build.sh mac

cd ./build/release/x86/tools/build

# copy your model.prototxt and model.caffemodel to this path

./caffe2mdl model.prototxt model.caffemodel

# if you want to test the model produced by this script, provide color value array of an image as the third parameter ,like this:

./caffe2mdl model.prototxt model.caffemodel data

# the color value should in order of rgb,and transformed according to the model.

# then you will get a new data.min.bin with test data inside

# after this command, model.min.json data.min.bin will be created in current

# some difference step you need to do if you convert caffe model to iOS GPU format

# see this:

open iOS/convert/iOSConvertREADME.md

特征

  • 一鍵部署,腳本參數(shù)就可以切換ios或者android

  • 支持iOS gpu運(yùn)行MobileNet、squeezenet模型

  • 已經(jīng)測試過可以穩(wěn)定運(yùn)行MobileNet、GoogLeNet v1、squeezenet模型

  • 體積極小,無任何第三方依賴。純手工打造。

  • 提供量化腳本,對(duì)32位float轉(zhuǎn)8位uint直接支持,模型體積量化后4M上下

  • 與ARM相關(guān)算法團(tuán)隊(duì)線上線下多次溝通,針對(duì)ARM平臺(tái)會(huì)持續(xù)優(yōu)化

  • NEON使用涵蓋了卷積、歸一化、池化所有方面的操作

  • 匯編優(yōu)化,針對(duì)寄存器匯編操作具體優(yōu)化

  • loop unrolling 循環(huán)展開,為提升性能減少不必要的CPU消耗,全部展開判斷操作

  • 將大量繁重的計(jì)算任務(wù)前置到overhead過程

MDL使用的是寬松的MIT開源協(xié)議。

如果你不想了解CNN細(xì)節(jié)實(shí)現(xiàn),百度在項(xiàng)目開源頁面(https://github.com/baidu/mobile-deep-learning)也附加了安裝的二維碼,可以直接掃碼安裝。